Process Design for Hot Forging of Asymmetric to Symmetric Rib-web Shaped Steel
DOI:
https://doi.org/10.14311/470Keywords:
process design, hot forging, asymmetric, symmetric, high speed railAbstract
The process design of hot forging, asymmetric to symmetric rib-web shaped steel, which is used for the turnout of express rails has been studied. Owing to the great difference in shape between the initial billet and the final forged product, it is impossible to hot forge the rail in a single stage operation. Therefore, multi stage forging and also die design for each stage are necessary for the production process. The numerical simulation for hot forging of asymmetric shape to symmetric shape was carried out using commercial FEM code, DEFORMTM-2D. Modification of the design and repeated simulation was carried out on the basis of the simulation results. For comparison with the simulation results, a flow analysis experiment using plasticine was also carried out. The results of the flow analysis experiment showed good agreement with those of the simulation.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd