Static vs. Dynamic List-Scheduling Performance Comparison
DOI:
https://doi.org/10.14311/490Keywords:
list scheduling, compile time scheduling, task graph scheduling, homogeneous computingAbstract
The problem of efficient task scheduling is one of the most important and most difficult issues in homogeneous computing environments. Finding an optimal solution for a scheduling problem is NP-complete. Therefore, it is necessary to have heuristics to find a reasonably good schedule rather than evaluate all possible schedules. List-scheduling is generally accepted as an attractive approach, since it pairs low complexity with good results. List-scheduling algorithms schedule tasks in order of priority. This priority can be computed either statically (before scheduling) or dynamically (during scheduling). This paper presents the characteristics of the two main static and the two main dynamic list-scheduling algorithms. It also compares their performance in dealing with random generated graphs with various characteristics.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd