THE USE OF DEM SIMULATION FOR CONFIRMING THE PROCESS OF PARTICULATE MATERIAL MIXING
DOI:
https://doi.org/10.14311/AP.2018.58.0378Keywords:
particulate material, mixing, theoretical knowledge, experimental measurements, DEM methodAbstract
At the present time in the research of particulate materials, computer methods that work independently with individual particles are coming to the forefront. One such method is the Discrete Element Method – DEM, which is already widely used. Its usage, however, is complex, mostly due to the input data – what the properties of the researched material are, plus their interaction in processes. And despite the progress, it is still always necessary to validate the experimental equipment and to verify the individual simulations by an experimental measuring or by theoretical knowledge. This study focuses on the verification of the simulation of the mixing of a particulate material with the help of the DEM method, whereby simulations are compared with an experimental measurement and theoretic calculations. The theoretical calculation was carried out by the Novosad model, while the experimental material was granulated polyethylene with strictly defined mechanical-physical properties.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd