MODEL-BASED SECURITY ANALYSIS OF FPGA DESIGNS THROUGH REINFORCEMENT LEARNING
DOI:
https://doi.org/10.14311/AP.2019.59.0518Keywords:
FPGA, IT security, model-driven design, reinforcement learning, machine learning.Abstract
Finding potential security weaknesses in any complex IT system is an important and often challenging task best started in the early stages of the development process. We present a method that transforms this task for FPGA designs into a reinforcement learning (RL) problem. This paper introduces a method to generate a Markov Decision Process based RL model from a formal, high-level system description (formulated in the domain-specific language) of the system under review and different, quantified assumptions about the system’s security. Probabilistic transitions and the reward function can be used to model the varying resilience of different elements against attacks and the capabilities of an attacker. This information is then used to determine a plausible data exfiltration strategy. An example with multiple scenarios illustrates the workflow. A discussion of supplementary techniques like hierarchical learning and deep neural networks concludes this paper.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd