OPTIMIZATION OF BIODIESEL PRODUCTION FROM WASTE FRYING OIL OVER ALUMINA SUPPORTED CHICKEN EGGSHELL CATALYST USING EXPERIMENTAL DESIGN TOOL
DOI:
https://doi.org/10.14311/AP.2019.59.0088Keywords:
Biodiesel, catalyst, characterization, eggshell, waste frying oilAbstract
An optimization of the biodiesel production from a waste frying oil via a heterogeneous transesterification was studied. This present study is also aimed at investigating the catalytic ehaviour of the alumina supported eggshell (ASE) for the synthesis of biodiesel. A synthesized ASE catalyst, at various mixing ratios of alumina to eggshell, was investigated and exhibited a better activity for the reaction when the eggshell and alumina were mixed via incipient wetness impregnation in 2 : 1 proportion on a mass basis and calcined at 900 °C for 4 h. The as-synthesized catalyst was characterized by basicity, BET, SEM, EDX, and FTIR. The 2k factorial experimental design was employed for an optimization of process variables, which include catalyst loading, reaction time, methanol/oil molar ratio and reaction temperature and their effects on the biodiesel yield were studied. The optimization results showed that the reaction time has the highest percentage contribution of 40.139% while the catalyst loading contributes the least to the biodiesel production, as low as 1.233 %. The analysis of variance (ANOVA) revealed a high correlation coefficient (R2 = 0.9492) and the interaction between the reaction time and reaction temperature contributes significantly to the biodiesel production process with percentage contribution of 14.001 %, compared to other interaction terms. The biodiesel yield of 77.56% was obtained under the optimized factor combination of 4.0 wt.% catalyst loading, 120 min reaction time, 12 : 1 methanol/oil molar ratio and reaction temperature of 65 °C. The reusability study showed that the ASE catalyst could be reused for up to four cycles and the biodiesel produced under optimum conditions conformed to the ASTM standard.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd