COMPARISON OF ENERGY FLOW STREAM AND ISENTROPIC METHOD FOR STEAM TURBINE ENERGY ANALYSIS
DOI:
https://doi.org/10.14311/AP.2019.59.0109Keywords:
Steam turbine, Energy analysis, Energy flow method, Isentropic method.Abstract
In this paper, a comparison of two different methods for a steam turbine energy analysis is presented. A high-pressure steam turbine from a supercritical thermal power plant (HPT) was analysed at three different turbine loads using the energy flow stream (EFS) method and isentropic (IS) method. The EFS method is based on steam turbine input and output energy flow streams and on the real steam turbine produced power. The method is highly dependable on the steam mass flow rate lost through the turbine gland seals. The IS method is based on a comparison of turbine steam expansion processes. Observed energy analysis methods cannot be directly compared because they are based on different sources of steam turbine energy losses, so, an overall steam turbine energy analysis is presented. Unlike most steam turbines from the literature, the analysed HPT did not have the highest overall energy efficiency at a full load due to exceeding the water/steam critical pressure at the turbine inlet during such operation.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd