INVERTED PENDULUM WITH LINEAR SYNCHRONOUS MOTOR SWING UP USING BOUNDARY VALUE PROBLEM
DOI:
https://doi.org/10.14311/AP.2019.59.0458Keywords:
Automatic model generator, pendulum on the cart, linear synchronous motor, feedforward/ feedback control structure, boundary value problem, swing-up control.Abstract
Research in the field of underactuated systems shows that control algorithms which take the natural dynamics of the system’s underactuated part into account are more energy-efficient than those utilizing fully-actuated systems. The purpose of this paper to apply the two-degrees-of-freedom (feedforward/feedback) control structure to design a swing-up manoeuver that involves tracking the desired trajectories so as to achieve and maintain the unstable equilibrium position of the pendulum on the cart system. The desired trajectories are obtained by solving the boundary value problem of the internal system dynamics, while the optimal state-feedback controller ensures that the desired trajectory is tracked with minimal deviations. The proposed algorithm is verified on the simulation model of the available laboratory model actuated by a linear synchronous motor, and the resulting program implementation is used to enhance the custom Simulink library Inverted Pendula Modeling and Control, developed by the authors of this paper.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd