FABRICATION OF Mg-Zn-Al HYDROTALCITE AND ITS APPLICATION FOR Pb2+ REMOVAL
DOI:
https://doi.org/10.14311/AP.2019.59.0260Keywords:
adsorption, isotherm, kinetics, Mg-Zn-Al hydrotalcite, Pb2 , removalAbstract
The fabrication of Mg-Zn-Al Hydrotalcite (HT) was carried out by the co-precipitation method at various molar ratios. The Mg-Zn-Al HT compound at the optimum molar ratio was then calcined to determine the effect of calcination on the Pb2+ adsorption. The kinetics of the adsorption type was determined by applying pseudo first order and pseudo second order kinetics models. Meanwhile, to investigate the adsorption process, the Freundlich and Langmuir equations were applied to determine the adsorption isotherm. The results showed that the optimum Mg-Zn-Al HT was at a molar ratio of 3 : 1 : 1 with an adsorption efficiency of 73.16 %, while Mg-Zn-Al HT oxide increased the adsorption efficiency to 98.12 %. The optimum condition of Pb2+ removal using Mg-Zn-Al HT oxide was reached at pH 5 and a contact time of 30 minutes. The adsorption kinetics follows the pseudo second order kinetics model with a rate constant of 0.544 g/mg·min. The isotherm adsorption follows the Langmuir isotherm model with a maximum capacity of 3.916 mg/g and adsorption energy of 28.756 kJ/mol.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd