EIGENVALUES EVALUATION OF GENERALLY DAMPED ELASTIC DISC BRAKE MODEL LOADED WITH NON-CONSERVATIVE FRICTION FORCE
DOI:
https://doi.org/10.14311/AP.2020.60.0081Keywords:
Eigenvalues bifurcation, Krein collision, non-conservative force, modal decomposition, brake squeal.Abstract
This paper deals with the evaluation of eigenvalues of a linear damped elastic two-degrees-of-freedom system under a non- onservative loading. As a physical interpretation of a proposed mathematical model, a simplified disk brake model is considered. A spectral analysis is performed to predict an eigenvalues bifurcation, known as the Krein collision, leading to double eigenvalues, one of them having a positive real part causing a vibration instability of the mechanical systems. This defective behaviour of eigenvalues is studied with respect to a magnitude of non-conservative Coulomb friction force, through the variation of the friction coefficient. The influence of a proportional versus general damping on the system stability is further analysed. The generalized non-symmetric eigenvalue problem calculation is employed for spectral analyses, while a modal decomposition is performed to obtain a time-domain response of the system. The analyses are compared with an experiment.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd