SIMILARITY SOLUTIONS AND CONSERVATION LAWS FOR THE BEAM EQUATIONS: A COMPLETE STUDY
DOI:
https://doi.org/10.14311/AP.2020.60.0098Keywords:
Symmetry analysis, singularity analysis, conservation laws, beam equationAbstract
We study the similarity solutions and we determine the conservation laws of various forms of beam equations, such as Euler-Bernoulli, Rayleigh and Timoshenko-Prescott. The travelling-wave reduction leads to solvable fourth-order odes for all the forms. In addition, the reduction based on the scaling symmetry for the Euler-Bernoulli form leads to certain odes for which there exists zero symmetries. Therefore, we conduct the singularity analysis to ascertain the integrability. We study two reduced odes of second and third orders. The reduced second-order ode is a perturbed form of Painlevé-Ince equation, which is integrable and the third-order ode falls into the category of equations studied by Chazy, Bureau and Cosgrove. Moreover, we derived the symmetries and its corresponding reductions and conservation laws for the forced form of the abovementioned beam forms. The Lie Algebra is mentioned explicitly for all the cases.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd