THE DEVELOPMENT OF A NEW ADSORPTION-DESORPTION DEVICE
DOI:
https://doi.org/10.14311/AP.2020.60.0455Keywords:
Adsorption, desorption, air stripping, activated carbon, ethanolAbstract
The aim of this work was to construct a new adsorption-desorption device based on the principle of separation of volatile organic compounds, e.g., ethanol. As an adsorbent, it is possible to use granulated activated carbon (GAC) in the adsorption and desorption process. In this study, two kinds of GACs were used and marked as GAC1 and GAC2. A particle size distribution and water vapour sorption for the selected GACs were measured. An experiment with distilled water was performed as a preliminary study of the new device’s functionality. After the determination of the time necessary for the adsorption and desorption, the experiments were carried out with a model mixture (5% v/v ethanol-water mixture), which resulted in a product with the ethanol content of 39.6 %. The main advantage of this device would be the potential competition of conventional distillation.
Downloads
References
S. Onuki, J. Koziel, W. S. Jenks, et al. Ethanol purification with ozonation, activated carbon adsorption, and gas stripping. Separation and Purification Technology 151:165–171, 2015. doi:10.1016/j.seppur.2015.07.026.
F. Gironi, V. Piemonte. VOCs removal from dilute vapour streams by adsorption onto activated carbon. Chemical Engineering Journal 172(2-3):671–677, 2011. doi:10.1016/j.cej.2011.06.034.
F. Taylor, M. J. Kurantz, N. Goldberg, J. Craig Jr. Kinetics of continuous fermentation and stripping of ethanol. Biotechnology Letters volume 20(1):67–72, 1998. doi:10.1023/A:1005339415979.
A. J. Fletcher, Y. Yüzak, K. M. Thomas. Adsorption and desorption kinetics for hydrophilic and hydrophobic vapors on activated carbon. Carbon 44:989–1004, 2006. doi:10.1016/j.carbon.2005.10.020.
A. Silvestre-Albero, J. Silvestre-Albero, A. Sepúlveda- Escribano, F. Rodríguez-Reinoso. Ethanol removal using activated carbon: Effect of porous structure and surface chemistry. Microporous and Mesoporous Materials 120(1- 2):62–68, 2009. oi:10.1016/j.micromeso.2008.10.012.
G. Ponce, J. Miranda, M. Alves, et al. Simulation, analysis and optimization of an in situ gas stripping fermentation process in a laboratory scale for bioethanol production. Chemical Engineering Transactions 37:295–300, 2014. doi:10.3303/CET1437050.
J. Sonego, D. Lemos, G. Y. Rodriguez, et al. Extractive batch fermentation with CO2 stripping for ethanol production in a bubble column bioreactor: Experimental and modeling. Energy & Fuels 28(12):7552–7559, 2014. doi:10.1021/ef5018797.
C. Löser, A. Schröder, S. Deponte, T. Bley. Balancing the ethanol formation in continuous bioreactors with ethanol stripping. Engineering in Life Sciences 5(4):325–332, 2005. doi:10.1002/elsc.200520084.
G. M. Walker, G. Stewart. Saccharomyces cerevisiae in the production of fermented everages. Beverages 2(30):1–12, 2016. doi:10.3390/beverages2040030.
C. Xue, G.-Q. Du, J.-X. Sun, et al. Characterization of gas stripping and its integration with
acetone–butanol–ethanol fermentation for high-efficient butanol production and recovery. Biochemical Engineering Journal 83:55–61, 2014. doi:10.1016/j.bej.2013.12.003.
T. Ezeji, N. Qureshi, H. Blaschek. Microbial production of a biofuel (acetone-butanol-ethanol) in a continuous bioreactor: Impact of bleed and simultaneous product removal. Bioprocess and Biosystems Engineering 36(1):109–116, 2013. doi:10.1007/s00449-012-0766-5.
N. Qureshi, H. Blaschek. Recovery of butanol from fermentation broth by gas stripping. Renewable Energy 22(4):557–564, 2001. doi:10.1016/S0960-1481(00)00108-7.
G. Ponce, J. Neto, S. Santos de Jesus, et al. Sugarcane molasses fermentation with in situ gas stripping using low and moderate sugar concentrations for ethanol production: Experimental data and modeling. Biochemical Engineering Journal 110:152–161, 2016. doi:10.1016/j.bej.2016.02.007.
L. M. Vane, F. R. Alvarez. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation. Journal of Chemical Technology & Biotechnology 83:1275–1287, 2008. doi:10.1002/jctb.1941.
L. Li, P. A. Quinlivan, D. R. U. Knappe. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 40:2085–2100, 2002. doi:10.1016/j.watres.2005.01.029.
H. S. Samanta, S. K. Ray. Separation of ethanol from water by pervaporation using mixed matrix copolymer membranes. Separation and Purification Technology 146:176–186, 2015. doi:10.106/j.seppur.2015.03.006.
K. N. Truong, J. W. Blackburn. The stripping of organic chemicals in biological treatment processes. Environmental Progress 3(3):143–152, 1984. doi:10.1002/ep.670030304.
M. Hashi, J. Thibault, F. H. Tezel. Recovery of ethanol from carbon dioxide stripped vapor mixture: Adsorption prediction and modeling. Industrial & Engineering Chemistry Research 49(18):8733–8740, 2010. doi:10.1021/ie1002608.
R. Xiong, S. Sandler, D. Vlachos. Alcohol adsorption onto silicalite from aqueous solution. The Journal of Physical Chemistry C 115(38):18659–18669, 2011. doi:10.1021/jp205312k.
J. Delgado, V. Águeda, M. Uguina, et al. Separation of ethanol–water liquid mixtures by adsorption on a polymeric resin sepabeads 207. The Chemical Engineering Journal 220:89–97, 2013. doi:10.1016/j.cej.2013.01.057.
J. A. Delgado, M. A. Uguina, J. L. Sotelo, et al. Separation of ethanol–water liquid mixtures by adsorption on silicalite. Chemical Engineering Journal 180:137–144, 2012. doi:10.1016/j.cej.2011.11.026.
J. Vivo-Vilches, A. Perez-Cadenas, F. Carrasco- Marín, F. J. Maldonado-Hódar. About the control of VOC’s emissions from blended fuels by developing specific adsorbents using agricultural residues. Journal of Environmental Chemical Engineering 3:2662–2669, 2015. doi:10.1016/j.jece.2015.09.027.
E. Wolak, E. Vogt, J. Szczurowski. Chemical and hydrophobic modification of activated WD-extra carbon. Energy Fuels 14:1–8, 2017. doi:10.1051/e3sconf/20171402033.
J. A. Delgado, V. I. Águeda, M. A. Uguina, et al. Separation of ethanol-water mixtures by adsorption on BPL activated carbon with air regeneration. Separation and Purification Technology 149:370–380, 2015. doi:DOI:10.1016/j.seppur.2015.06.011.
K. Dettmer, W. Engewald. Adsorbent materials commonly used in air analysis for dsorptive enrichment and thermal desorption of volatile organic compounds.
Analytical and Bioanalytical Chemistry 373:490–500, 2002. doi:10.1007/s00216-002-1352-5.
X. Zhang, B. Gao, A. E. Creamer, et al. Adsorption of VOCs onto engineered carbon material: A review. Journal of Hazardous Materials 338:102–123, 2017. doi:10.1016/j.hazmat.2017.05.013.
I. K. Shah, P. Pre, B. J. Alappat. Effect of thermal regeneration of spent activated carbon on volatile organic compound adsorption performances. Journal of the Taiwan Institute of hemical Engineers 45:1733–1738, 2014. doi:10.1016/j.jtice.2014.01.006.
N. Qureshi, S. Hughes, I. Maddox, M. Cotta. Energy efficient recovery of butanol from fermentation broth by adsorption. Bioprocess and biosystems engineering 27(4):215–222, 2005. doi:10.1007/s00449-005-0402-8.
L. Gabrišová, P. Peciar, R. Kubinec. Apparatus for concentrating volatile organic compounds by adsorption and desorption method for concentrating volatile organic
compounds by adsorption and desorption. Patent - Application Number 50055-2018. Industrial Property Office of the Slovak Republic, Banská Bystrica, Slovakia, 2018.
M. E. Gamal, H. A. Mousa, M. H. El-Naas, et al. Bio-regeneration of activated carbon: A comprehensive review. Separation and Purification Technology 197:345–359, 2018. doi:10.1016/j.seppur.2018.01.015.
M. Jeguirim, M. Belhachemi, L. Limousy, S. Bennici. Adsorption/reduction of nitrogen dioxide on activated carbons: Textural properties versus surface chemistry –
A review. Chemical Engineering Journal 347:493–504, 2018. doi:10.1016/j.cej.2018.04.063.
G. F. de Oliviera, R. C. de Andrade, M. A. C. Trindade, et al. Thermogravimetric and spectroscopic study (TG–DTA/FT–IR) of activated carbon from the renewable biomass source babassu. Química Nova 40(3):284–292, 2017. doi:10.21577/0100-4042.20160191.
M. Baysal, K. Bilge, B. Yilmaz, et al. Preparation of high surface area activated carbon from waste-biomass of sunflower piths: Kinetics and equilibrium studies on the dye removal. Journal of Environmental Chemical Engineering 6:1702–1713, 2018. doi:10.1016/j.jece.2018.02.020.
A. C. Lua, J. Guo. Preparation and characterization of activated carbons from oil-palms stones for gas-phase adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects 179:151–162, 2001. doi:10.1016/S0927-7757(00)00651-8.
S. Niknaddaf, J. D. Atkinson, P. Shariaty, et al. Heel formation during volatile organic compound desorption from activated fiber cloth. Carbon 96:131–138, 2016. doi:10.1016/j.carbon.2015.09.049.
J. D. Seader, E. J. Henley, D. K. Roper. Separation process principles: Chemical and Biochemical Operation (3rd. ed). John Wiley & Sons, Inc. The United States, 2011.
T. C. Ezeji, P. M. Karcher, N. Qureshi, H. P. Blaschek. Improving performance of a gas
stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation. Bioprocess and Biosystems Engineering 27(3):207–214, 2005. doi:10.1007/s00449-005-0403-7.
P. Liss, P. Slater. Flux of gases across the air-sea interface. Nature 247:181–184, 1974.
doi:10.1038/247181a0.
D. Mackay, P. J. Leinonen. Rate of evaporation of low-solubility contaminants from water bodies to atmosphere. Environmental Science & Technology 9(13):1178–1180, 1975. doi:10.1021/es60111a012.
C. D. Hodgman, R. C. Weast, R. S. Shankland, et.al. CRC Handbook of chemistry and physics: A readyreference book of chemical and physical data (44th. ed). The Chemical Rubber Publishing, Cleveland, Ohio, 1963.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Ľudmila Gabrišová, Peter Peciar, Oliver Macho, Martin Juriga, Paulína Galbavá, Žofia Szabóová, Róbert Kubinec, Marián Peciar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd