ANALYSIS OF STATIC ANGLE OF REPOSE WITH RESPECT TO POWDER MATERIAL PROPERTIES
DOI:
https://doi.org/10.14311/AP.2020.60.0073Keywords:
Angle of repose, cohesion, powders, angle of internal friction, bulk density.Abstract
This paper investigates the Angle of Repose (AoR) of powder materials with respect to their morphological and rheological properties. Glass beads, sand, flour and semolina of different particle sizes were used as the experimental materials. The investigated material was analysed with respect to particle shape and size. The rheological properties of the material were obtained by a shear cell test. The AoR was analysed in terms of cohesion, bulk density, particle size and circularity. More cohesive materials such as the flour samples exhibited the largest AoR > 40°, indicating their poor flowability. Glass bead samples with a high circularity value had significantly lower AoR than the flour. The Angle of Internal Friction values were not dependent on those of the AoR. Using a dimensional analysis, a mathematical model was developed to determine the AoR values based on the material properties. By the application of this model, highly accurate calculation of the value of AoR is made possible.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd