Signal-to-Noise Ratio Improvement based on the Discrete Wavelet Transform in Ultrasonic Defectoscopy
DOI:
https://doi.org/10.14311/606Keywords:
ultrasonic testing, discrete wavelet transform, de-noising algorithmsAbstract
In ultrasonic testing it is very important to recognize the fault echoes buried in a noisy signal. The fault echo characterizes a flaw in the material. An important requirement on ultrasonic signal filtering is zero-time shift, because the position of ultrasonic echoes is essential. This requirement is accomplished using the discrete wavelet transform (DWT), which is used for reducing the signal-to-noise ratio. This paper evaluates the quality of filtering using the discrete wavelet transform. Additional computer simulations of the proposed algorithms are presented.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd