Size Effect in Fracture of Concrete Specimens and Structures: New Problems and Progress
DOI:
https://doi.org/10.14311/608Keywords:
size effect, scaling, fracture mechanics, cohesive cracks, quasibrittle materials, concreteAbstract
Presented is a concise summary of recent Northwestern University studies of six new problems. First, the decrease of fracture energy during crack propagation through a boundary layer, documented by Hu and Wittmann, is shown to be captured by a cohesive crack model in which the softening tail slope depends on the distance from the boundary (which causes an apparent size effect on fracture energy and implies that the nonlocal damage model is more fundamental than the cohesive crack model). Second, an improved universal size effect law giving a smooth transition between failures at large cracks (or notches) and at crack initiation is presented. Third, a recent renewed proposal that the nominal strength variation as a function of notch depth be used for measuring fracture energy is critically examined. Fourth, numerical results and a formula describing the size effect of finite-angle notches are presented. Fifth, a new size effect law derivation from dimensional analysis coupled with asymptotic matching is given. Finally, an improved code-type formula for shear capacity of R.C. beams is proposed.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd