TESTING OF GLUED JOINTS ON PLASTIC PARTS MANUFACTURED USING FFF TECHNOLOGY
DOI:
https://doi.org/10.14311/AP.2020.60.0512Keywords:
Glued joints, FFF technology, tensile test, flexible plastics, strength testAbstract
The article focuses on the testing of glued joints of plastic parts manufactured by 3D rapid prototyping, using the Fused Filament Fabrication technology. The first part of the article describes the suitability of using a glued joint. Then follows a brief description of the plastic materials used for the manufacturing of the testing samples. The materials include not only the common types, such as Polylactide, Polyethylene Terephthalate, Acrylonitrile Butadiene Styrene, but also Thermoplastic Polyurethane, which has a high elasticity and is usually described as a flexible material. The main section of the article deals with the testing of glued joints on a tensometric machine, which produces stress-strain curves. The shear strength of the joints is evaluated. For each material, multiple samples are prepared with different orientation of individual layers created by the 3D printing process. The impact of the orientation of the layers on the resulting strength of the glued joint is also evaluated. The final section of the article presents comparison and evaluation of the results –analyses of cracks, the impact of the orientation of the layers and the impact of individual materials. The experiment proved the independence of the orientation of the layers on the strength of the glued joint. It was also found out during the experiment that the use of a common adhesive on a flexible material was unsuitable.
Downloads
References
R. Jiang, R. Kleer, F. T. Piller. Predicting the future of additive manufacturing: A Delphi study on economic and societal implications of 3D printing for 2030. Technological Forecasting and Social Change 117:84 – 97, 2017. doi:10.1016/j.techfore.2017.01.006.
Y. He, G.-H. Xue, J.-Z. Fu. Fabrication of low cost soft tissue prostheses with the desktop 3D printer. Scientific Reports 4:1 – 7, 2014. doi:10.1038/srep06973.
J. Zuniga, D. Katsavelis, J. Peck, et al. Cyborg beast: A low-cost 3d-printed prosthetic hand for children with upper-limb differences. BMC research notes 8(1):10, 2015. doi:10.1186/s13104-015-0971-9.
J. Lipina, V. Krys, J. Sedlák. Shaped glued connection of two parts made by rapid prototyping technology. In Modeling and Optimization of the Aerospace, Robotics, Mechatronics, Machines-Tools, Mechanical Engineering and Human Motricity Fields, vol. 555 of Applied Mechanics and Materials, pp. 541 – 548. 2014. doi:10.4028/www.scientific.net/AMM.555.541.
K. Silver, J. Potgieter, K. Arif, R. Archer. Opportunities and challenges for large scale 3D printing of complex parts. In 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), vol. 2017 December, pp. 1 – 6. 2017. doi:10.1109/M2VIP.2017.8211515.
Original Prusa i3 MK3 3D Printer. https://shop.prusa3d.com/cs/3d-tiskarny/181-3dtiskarna-
original-prusa-i3-mk3s.html#. Accessed: 20 May 2020.
T. Yao, J. Ye, Z. Deng, et al. Tensile failure strength and separation angle of FDM 3D printing PLA material: Experimental and theoretical analyses. Composites Part B: Engineering 188:107894, 2020. doi:10.1016/j.compositesb.2020.107894.
S. Wang, Y. Ma, Z. Deng, et al. Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. Polymer Testing 86:106483, 2020. doi:10.1016/j.polymertesting.2020.106483.
J. Folta. Hodnocení pevnosti lepených spojů v konstrukci autobusů. Bachelor’s thesis, University of Pardubice, Pardubice, 2018.
B. M. Malyshev, R. L. Salganik. The strength of adhesive joints using the theory of cracks. International Journal of Fracture Mechanics 1(2):114 – 128, 1965. doi:10.1007/BF00186749.
ASTM D638 - 14 - Standard Test Method for Tensile Properties of Plastics. Standard, American Society for Testing and Materials, West Conshohocken, 2014.
CSN EN 1465 - Lepidla - Stanovení smykové pevnosti v tahu tuhých adherendu na přeplátovaných tělesech. Standard, Česká agentura pro standardizaci,
Prague, 2009.
K. Kim, J. Park, J. hoon Suh, et al. 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments. Sensors and Actuators A: Physical 263:493 – 500, 2017. doi:10.1016/j.sna.2017.07.020.
All3DP. 3D Printing Infill: The Basics – Simply Explained. https://all3dp.com/2/infill-3dprinting- what-it-means-and-how-to-use-it/. Accessed: 20 May 2020.
Loctite 401/406/454: Instant adhesives. https://www.interempresas.net/Hardware/
Companies-Products/Product-Instant-adhesives- Loctite-Loctite-401-406-454-86539.html.
Accessed: 21 May 2020.
Loctite 406 Technical Data Sheet. http://polymerteknik.com/doc/Loctite-406.pdf.
Accessed: 20 May 2020.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Jiří Suder, Michal Vocetka, Tomáš Kot, František Fojtík, Martin Fusek

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd