NOTE ON THE PROBLEM OF MOTION OF VISCOUS FLUID AROUND A ROTATING AND TRANSLATING RIGID BODY
DOI:
https://doi.org/10.14311/AP.2021.61.0005Keywords:
Incompressible fluid , rigid body, exterior domain, estimates of pressure, leading terms, artificial boundary conditionsAbstract
We consider the linearized and nonlinear systems describing the motion of incompressible flow around a rotating and translating rigid body Ɗ in the exterior domain Ω = ℝ3 \ D , where Ɗ ⊂ ℝ3 is open and bounded, with Lipschitz boundary. We derive the L∞-estimates for the pressure and investigate the leading term for the velocity and its gradient. Moreover, we show that the velocity essentially behaves near the infinity as a constant times the first column of the fundamental solution of the Oseen system. Finally, we consider the Oseen problem in a bounded domain ΩR := BR ∩ Ω under certain artificial boundary conditions on the truncating boundary ∂BR, and then we compare this solution with the solution in the exterior domain Ω to get the truncation error estimate.
Downloads
References
C. Conca, J. San Martín H., M. Tucsnak. Motion of a rigid body in a viscous fluid. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics 328(6):473 – 478, 1999. doi:10.1016/S0764-4442(99)80193-1.
B. Desjardins, M. J. Esteban. Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Archive for Rational Mechanics and Analysis 146:59–71, 1999. doi:10.1007/s002050050136.
M. Gunzburger, H.-C. Lee, G. Seregin. Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. Journal of Mathematical Fluid Mechanics 2:219–266, 2000. doi:10.1007/PL00000954.
K. H. Hoffmann, V. N. Starovoitov. On a motion of a solid body in a viscous fluid. Two dimensional case. Advances in Mathematical Sciences and Applications 9:633–648, 1999.
G. P. Galdi. Handbook of Mathematical Fluid Dynamics, vol. 1, chap. On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications, pp. 653–791. North-Holland, Amsterdam, 2002.
R. Farwig, M. Krbec, Š. Necasová. A weighted Lq-approach to Oseen flow around a rotating body. Mathematical Methods in the Applied Sciences 31(5):551–574, 2008. doi:10.1002/mma.925.
R. Farwig. An lq-analysis of viscous fluid flow past a rotating obstacle. Tôhoku Math J 58:129–147, 2006. doi:10.2748/tmj/1145390210.
R. Farwig. Estimates of lower order derivatives of viscous fluid flow past a rotating obstacle. Regularity and other aspects of the Navier-Stokes equations 70:73–84, 2005.
R. Farwig, T. Hishida, D. Muller. Lq-theory of a singular “winding” integral operator arising from fluid dynamics. Pacific Journal of Mathematics 215:297–313, 2004. doi:10.2140/pjm.2004.215.297.
T. Hishida. An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle. Archive for Rational Mechanics and Analysis 150:307–348, 1999. doi:10.1007/s002050050190.
T. Hishida. The Stokes operator with rotation effect in exterior domains. Analysis 19(1):51 – 68, 1999. doi:10.1524/anly.1999.19.1.51.
T. Hishida. lq estimates of weak solutions to the stationary Stokes equations around a rotating body. Journal of the Mathematical Society of Japan 58:743–767, 2006.
T. Takahashi. Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Advances in Differential Equations 8(12):1499 – 1532, 2003.
T. Takahashi, T. Marius. Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid. Journal of Mathematical Fluid Mechanics 6:53–77, 2004. doi:10.1007/s00021-003-0083-4.
P. Cumsille, T. Takahashi. Well posedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Czechoslovak Mathematical Journal 58:961–992, 2008. doi:10.1007/s10587-008-0063-2.
R. Farwig, R. Guenther, E. Thomann, Š. Necasová. The fundamental solution of linearized nonstationary Navier-Stokes equations of motion around a rotating and translating body. Discrete and Continuous Dynamical Systems 34:511–529, 2014. doi:10.3934/dcds.2014.34.511.
M. Geissert, T. Hansel. A non-autonomous model problem for the Oseen-Navier-Stokes flow with rotating effects. Journal of The Mathematical Society of Japan 63, 2010. doi:10.2969/jmsj/06331027.
G. P. Galdi, M. Kyed. Steady-state Navier-Stokes flows past a rotating body: Leray solutions are physically reasonable. Archive for Rational Mechanics and Analysis 200:21–58, 2011. doi:10.1007/s00205-010-0350-6.
R. Farwig, G. Galdi, M. Kyed. Asymptotic structure of a leray solution to the navier-stokes flow around a rotating body. Pacific Journal of Mathematics 253(2):367–382, 2011. doi:10.2140/pjm.2011.253.367.
P. Deuring, S. Kračmar, Š. Nečasová. Pointwise decay of stationary rotational viscous incompressible flows with nonzero velocity at infinity. Journal of Differential Equations 255(7):1576 – 1606, 2013. doi:10.1016/j.jde.2013.05.016.
M. Kyed. On the asymptotic structure of a Navier-Stokes flow past a rotating body. Journal of the Mathematical Society of Japan 66(1):1–16, 2014. doi:10.2969/jmsj/06610001.
G. P. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations, vol. I. Linearised Steady Problems. Springer, New York, 1998.
P. Deuring, S. Kračmar, Š. Nečasová. Asymptotic structure of viscous incompressible flow around a rotating body, with nonvanishing flow field at infinity. Zeitschrift für angewandte Mathematik und Physik 68, 2016. doi:10.1007/s00033-016-0760-x.
P. Deuring, S. Kračmar, Š. Nečasová. A leading term for the velocity of stationary viscous incompressible flow around a rigid body performing a rotation and a translation. Discrete and Continuous Dynamical Systems 37:1389–1409, 2016. doi:10.3934/dcds.2017057.
P. Deuring, S. Kračmar, Š. Nečasová. On pointwise decay of linearized stationary incompressible viscous flow around rotating and translating bodies. SIAM J Math Analysis 43:705–738, 2011. doi:10.1137/100786198.
P. Deuring, S. Kračmar, Š. Nečasová. Linearized stationary incompressible flow around rotating and translating bodies – leray solutions. Discrete and Continuous Dynamical Systems - Series S 7:967–979, 2014. doi:10.3934/dcdss.2014.7.967.
P. Deuring. Finite element methods for the stokes system in three-dimensional exterior domains. Mathematical Methods in the Applied Sciences 20(3):245–269, 1997.
doi:10.1002/(SICI)1099-1476(199702)20:3<245::AID-MMA856>3.0.CO;2-F.
P. Deuring, S. Kračmar. Artificial boundary conditions for the oseen system in 3D exterior domains. Analysis 20(1):65 – 90, 2000. doi:10.1524/anly.2000.20.1.65.
G. P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations. Springer, New York, 2nd edn., 2011.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Sarka Necasova, Stanislav Kracmar, Paul Deuring

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd