USING TEXTILE ARAMID FABRICS TO INCREASE THE BALLISTIC RESISTANCE OF ULTRA-HIGH-PERFORMANCE STEEL-FIBRE REINFORCED CONCRETE
DOI:
https://doi.org/10.14311/AP.2020.60.0486Keywords:
Concrete, fibres, textile, Aramid fabrics, projectile impact, thin platesAbstract
Thin plates made of Ultra-High-Performance Steel-Fibre-Reinforced Concrete (UHPSFRC) with textile Aramid fabrics were subjected to a projectile impact and its post-test damage was discussed. The damage degrees were the type of the response and crater surface, which was determined by using a 3D scanner. The most common type of ammunition, which is a 7.62 × 39mm calibre with a full-metal jacket and a mild-steel core, was used for all specimens.
It was verified experimentally that the UHP-SFRC with textile Aramid fabrics has a better ballistic performance in comparison with its counterpart made of the UHP-SFRC without any textile reinforcement. Also, it was verified that specimens with the point or segment interconnection threads between the front side textile fabrics and rear side textile fabrics have a higher resistance due to the better integrity of the monolithic UHP-SFRC mixture.
Downloads
References
T. Krauthammer. Modern protective structures. CRC Press, Boca Raton, 2008.
M. H. Zhang, V. P. W. Shim, G. Lu, C. W. Chew. Resistance of high-strength concrete to projectile impact. International Journal of Impact Engineering 31(7):825 – 841, 2005. doi:10.1016/j.ijimpeng.2004.04.009.
R. Sovják, D. Shanbhag, P. Konrád, J. Zatloukal. Response of thin UHPFRC targets with various fibre volume fractions to deformable projectile impact. Procedia engineering 193:3 – 10, 2017. doi:10.1016/j.proeng.2017.06.179.
D. Nicolaides, A. Kanellopoulos, M. Petrou, et al. Development of a new Ultra High Performance Fibre Reinforced Cementitious Composite (UHPFRCC) for impact and blast protection of structures. Construction and Building Materials 95:667 – 674, 2015. doi:10.1016/j.conbuildmat.2015.07.136.
D. Nicolaides, A. Kanellopoulos, P. Savva, M. Petrou. Experimental field investigation of impact and blast load resistance of Ultra High Performance Fibre Reinforced Cementitious Composites (UHPFRCCs). Construction and Building Materials 95:566 – 574, 2015. doi:10.1016/j.conbuildmat.2015.07.141.
T. Vavriník, J. Zatloukal, J. Fornusek, P. Konvalinka. Numerical analysis of projectile impact on cementitious composite. In AIP Conference Proceedings, vol. 1558, pp. 1012 – 1015. American Institute of Physics, 2013. doi:10.1063/1.4825675.
D.-Y. Yoo, J.-H. Lee, Y.-S. Yoon. Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites. Composite Structures 106:742 – 753, 2013. doi:10.1016/j.compstruct.2013.07.033.
S. Abbas, A. M. Soliman, M. L. Nehdi. Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages. Construction and Building Materials 75:429 – 441, 2015. doi:10.1016/j.conbuildmat.2014.11.017.
J. Smith, G. Cusatis, D. Pelessone, et al. Discrete modeling of ultra-high-performance concrete with application to projectile penetration. International Journal of Impact Engineering 65:13 – 32, 2014. doi:10.1016/j.ijimpeng.2013.10.008.
R. Lovichova, J. Fornusek, M. Mara, et al. The fibre orientation influence in cementitious composite against extreme load resistance. In IOP Conference Series: Materials Science and Engineering, vol. 307, p. 012069. IOP Publishing, 2018. doi:10.1088/1757-899X/307/1/012069.
P.-C. Aïtcin. High performance concrete. CRC Press, 2011.
N. Banthia, F. Majdzadeh, J. Wu, V. Bindiganavile. Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear. Cement and Concrete Composites 48:91 – 97, 2014. doi:10.1016/j.cemconcomp.2013.10.018.
M. Pajak, J. Janiszewski, L. Kruszka. Laboratory investigation on the influence of high compressive strain rates on the hybrid fibre reinforced self-compacting concrete. Construction and Building Materials 227:116687, 2019. doi:10.1016/j.conbuildmat.2019.116687.
P. Máca, R. Sovják, P. Konvalinka. Mix design of UHPFRC and its response to projectile impact. International Journal of Impact Engineering 63:158 – 163, 2014. doi:10.1016/j.ijimpeng.2013.08.003.
S. Kravanja, R. Sovják. Ultra-high-performance fibre-reinforced concrete under highvelocity projectile impact. Part II. Applicability of prediction models. Acta Polytechnica 58:355 – 364, 2018.
P. J. Granata, A. Parvin. An experimental study on Kevlar strengthening of beam-column connections. Composite structures 53(2):163 – 171, 2001. doi:10.1016/S0263-8223(00)00187-2.
A. K. Bandaru, S. Patel, Y. Sachan, et al. Mechanical behavior of Kevlar/basalt reinforced
polypropylene composites. Composites Part A: Applied Science and Manufacturing 90:642 – 652, 2016. doi:10.1016/j.compositesa.2016.08.031.
S. G. Kim, J. K. Park, D. J. Kim. Direct tensile responses of aramid fiber reinforced cementitious composites and textile reinforced cementitious composites with 3D spacer fabric at high strain rates. Construction and Building Materials 168:232 – 243, 2018. doi:10.1016/j.conbuildmat.2018.02.136.
P. Máca, R. Sovják, T. Vavriník. Experimental investigation of mechanical properties of UHPFRC. Procedia Engineering 65:14 – 19, 2013. doi:10.1016/j.proeng.2013.09.004.
P. Máca, R. Sovják. Resistance of ultra high performance fibre reinforced concrete to projectile impact. In WIT Transactions on the Built Environment, Structures Under Shock and Impact XII, vol. 126, pp. 261 – 272. 2013. doi:10.2495/SU120231.
S. Kravanja, R. Sovják. Ultra-high-performance fibre-reinforced concrete under high-velocity projectile impact. Part I. Experiments. Acta Polytechnica 58(4):232 – 239, 2018. doi:10.14311/AP.2018.58.0232.
R. Sovjak, T. Vavriník, J. Zatloukal, et al. Resistance of slim UHPFRC targets to projectile impact using in-service bullets. International Journal of Impact Engineering 76:166 – 177, 2015.
doi:10.1016/j.ijimpeng.2014.10.002.
S. Kravanja, R. Sovják, P. Konrád, J. Zatloukal. Penetration resistance of semi-infinite UHPFRC targets with various fiber volume fractions against projectile impact. Procedia engineering 193:112 – 119, 2017. doi:10.1016/j.proeng.2017.06.193.
R. Sovják, T. Vavriník, M. Frydr`yn, et al. Residual velocity of the non-deformable projectile after perforating the ultra-high performance fibre reinforced concrete. In WIT Transactions on the Built Environment, Structures Under Shock and Impact XIII, vol. 141, pp. 257 – 264. 2014. doi:10.2495/SUSI140221.
B. P. Kneubuehl (ed.). Wound ballistics: Basics and applications. Springer-Verlag Berlin Heidelberg, 2011.
F. Vossoughi, C. P. Ostertag, P. J. M. Monteiro, G. C. Johnson. Resistance of concrete protected by fabric to projectile impact. Cement and Concrete Research 37(1):96 – 106, 2007.
doi:10.1016/j.cemconres.2006.09.003.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Michal Mára, Radoslav Sovják, Jindřich Fornůsek

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd