On Adequacy of Two-point Averaging Schemes for Composites with Nonlinear Viscoelastic Phases
DOI:
https://doi.org/10.14311/658Keywords:
Fiber-reinforced composite materials, microstructure, nonlinear viscoelastic behavior, Leonov model, energy methods, finite element modelingAbstract
Finite element simulations on fibrous composites with nonlinear viscoelastic response of the matrix phase are performed to explain why so called two-point averaging schemes may fail to deliver a realistic macroscopic response. Nevertheless, the potential of two-point averaging schemes (the overall response estimated in terms of localized averages of a two-phase composite medium) has been put forward in number of studies either in its original format or modified to overcome the inherited stiffness of classical ”elastic” localization rules. However, when the material model and geometry of the microstructure promote the formation of shear bands, none of the existing two-point averaging schemes will provide an adequate macroscopic response, since they all fail to capture the above phenomenon. Several examples are presented here to support this statement.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd