EXTERNAL ROLLING OF A POLYGON ON CLOSED CURVILINEAR PROFILE
DOI:
https://doi.org/10.14311/AP.2020.60.0313Keywords:
Equilateral polygon, curvilinear profile, external rolling, differential equation, centroidsAbstract
The rolling of a flat figure in the form of an equilateral polygon on a curvilinear profile is considered. The profile is periodic. It is formed by a series connection of an arc of a symmetrical curve. The ends of the arc rely on a circle of a given radius. The equation of the curve, from which the curvilinear profile is constructed, is found. This is done provided that the centre of the polygon, when it rolls in profile, must also move in a circle. Rolling occurs in the absence of sliding. Therefore, the length of the arc of the curve is equal to the length of the side of the polygon. To find the equations of the curve of the profile, a first-order differential equation is constructed. Its analytical solution is obtained. The parametric equations of the curve are obtained in the polar coordinate system. The limits of the change of an angular parameter for the construction of a profile element are found. It is a part of the arc of the curve. According to the obtained equations, curvilinear profiles with different numbers of their elements are constructed.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd