Implementation of Sliding Mode Observer Based Reconfiguration in an Autonomous Underwater Vehicle
DOI:
https://doi.org/10.14311/730Keywords:
autonomous underwater vehicles, sliding-mode control, fault tolerance, reconfiguration, sliding mode observers, environmental disturbancesAbstract
This paper looks at the implementation of a Sliding Mode Observer (SMO) based Reconfiguration algorithm to deal with sensor faults within the context of navigation controllers for Autonomous Underwater Vehicle (AUV). In this paper the reconfigurability aspects are considered for the heading controller. Simulation responses are used to illustrate that the Sliding Mode Observer is able to give state information to the controller when there is a fault in the AUV’s sensor package. Comparisons are made between the Sliding Mode Controller with and without reconfigurability for a number of different sensor failures, e.g. bias errors in or the complete loss of the heading data, and the robustness of the Sliding Mode Observer is investigated through the introduction of disturbances into the system.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd