Non-Standard Numeration Systems
DOI:
https://doi.org/10.14311/762Keywords:
numeration system, beta expansion, tau-adic expansionAbstract
We study some properties of non-standard numeration systems with an irrational base ß >1, based on the so-called beta-expansions of real numbers [1]. We discuss two important properties of these systems, namely the Finiteness property, stating whether the set of finite expansions in a given system forms a ring, and then the problem of fractional digits arising under arithmetic operations with integers in a given system. Then we introduce another way of irrational representation of numbers, slightly different from classical beta-expansions. Here we restrict ourselves to one irrational base – the golden mean ? – and we study the Finiteness property again.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd