Genetic Algorithm Based Control System Design of a Self-Excited Induction Generator
DOI:
https://doi.org/10.14311/812Keywords:
genetic algorithms, conventional controllers, self-excited induction generatorAbstract
This paper presents an application of the genetic algorithm (GA) for optimizing controller gains of the Self-Excited Induction Generator (SEIG) driven by the Wind Energy Conversion Scheme (WECS). The proposed genetic algorithm is introduced to adapt the integral gains of the conventional controllers of the active and reactive control loop of the system under study, where GA calculates the optimum value for the gains of the variables based on the best dynamic performance and a domain search of the integral gains. The proposed genetic algorithm is used to regulate the terminal voltage or reactive power control, by adjusting the self excitation, and to control the mechanical input power or active power control by adapting the blade angle of WECS, in order to adjust the stator frequency. The GA is used for optimizing these gains, for an active and reactive power loop, by solving the related optimization problem. The simulation results show a better dynamic performance using the GA than using the conventional PI controller for active and reactive control.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd