A Simple Cache Emulator for Evaluating Cache Behavior for SMP Systems
DOI:
https://doi.org/10.14311/822Keywords:
cache hierarchy, cache emulator, symmetric multiprocessing, MESI protocolAbstract
Every modern CPU uses a complex memory hierarchy, which consists of multiple cache memory levels. It is very difficult to predict the behavior of this hierarchy for a given program (for details see [1, 2]). The situation is even worse for systems with a shared memory. The most important example is the case of SMP (symmetric multiprocessing) systems [3]. The importance of these systems is growing due to the multi-core feature of the newest CPUs.The Cache Emulator (CE) can simulate the behavior of caches inside an SMP system and compute the number of cache misses during a computation. All measurements are done in the “off-line” mode on a single CPU. The CE uses its own emulated cache memory for an exact simulation. This means that no other CPU activity influences the behavior of the CE. This work extends the Cache Analyzer introduced in [4].Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd