Performance Aspects of Sparse Matrix-Vector Multiplication
DOI:
https://doi.org/10.14311/826Keywords:
sparse matrix-vector multiplication, code restructuring, loop unrolling, software pipelining, cache hierarchyAbstract
Sparse matrix-vector multiplication (shortly SpM×V) is an important building block in algorithms solving sparse systems of linear equations, e.g., FEM. Due to matrix sparsity, the memory access patterns are irregular and utilization of the cache can suffer from low spatial or temporal locality. Approaches to improve the performance of SpM×V are based on matrix reordering and register blocking [1, 2], sometimes combined with software-pipelining [3]. Due to its overhead, register blocking achieves good speedups only for a large number of executions of SpM×V with the same matrix A.We have investigated the impact of two simple SW transformation techniques (software-pipelining and loop unrolling) on the performance of SpM×V, and have compared it with several implementation modifications aimed at reducing computational and memory complexity and improving the spatial locality. We investigate performance gains of these modifications on four CPU platforms.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd