Microsystems for Space Applications
DOI:
https://doi.org/10.14311/84Abstract
Recent progress in microsystems technologies make them suitable for the space research and development due to their low volume, low mass, low power consumption, leading to reduced mission cost. The most interesting approach is using standard technologies with additional post-processing steps to realize sensors and actuators together with signal processing circuits. This paper summarises some aspects and difficulties of the space environment. The radiation effects in space are described and damage on CMOS structures are explained. Design methodologies for hardening microsystems and MOS based circuits against these effects are presented. Some examples of microsystems examples for space applications fabricated by researches world-wide are given.Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd