Functional Determinants for Radially Separable Partial Differential Operators
DOI:
https://doi.org/10.14311/916Keywords:
quantum field theory, functional determinants, zeta functions, spectral theory, partial differential operatorsAbstract
Functional determinants of differential operators play a prominent role in many fields of theoretical and mathematical physics, ranging from condensed matter physics, to atomic, molecular and particle physics. They are, however, difficult to compute reliably in non-trivial cases. In one dimensional problems (i.e. functional determinants of ordinary differential operators), a classic result of Gel’fand and Yaglom greatly simplifies the computation of functional determinants. Here I report some recent progress in extending this approach to higher dimensions (i.e., functional determinants of partial differential operators), with applications in quantum field theory.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd