Self-Matching Properties of Beatty Sequences
DOI:
https://doi.org/10.14311/924Keywords:
Beatty sequences, Fibonacci numbers, cut-and-project schemeAbstract
We study the selfmatching properties of Beatty sequences, in particular of the graph of the function ⌊ jβ ⌋ against j for every quadratic unit βϵ (0,1). We show that translation in the argument by an element Gi of a generalized Fibonacci sequence almost always causes the translation of the value of the function by Gi=1. More precisely, for fixed i ϵ ℕ, we have ⌊β(j+Gi)⌋ = ⌊βj⌋ + Gi=1, where j ϵ Ui. We determine the set Ui of mismatches and show that it has a low frequency, namely βi.
Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd