Detection of Facial Features in Scale-Space
DOI:
https://doi.org/10.14311/948Keywords:
clustering methods, face recognition, feature extraction, interest points, Karhunen-Loeve transforms, object detection, pattern classificationAbstract
This paper presents a new approach to the detection of facial features. A scale adapted Harris Corner detector is used to find interest points in scale-space. These points are described by the SIFT descriptor. Thus invariance with respect to image scale, rotation and illumination is obtained. Applying a Karhunen-Loeve transform reduces the dimensionality of the feature space. In the training process these features are clustered by the k-means algorithm, followed by a cluster analysis to find the most distinctive clusters, which represent facial features in feature space. Finally, a classifier based on the nearest neighbor approach is used to decide whether the features obtained from the interest points are facial features or not.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd