Design and Validation of a Probe for Spatially and Temporally Resolved Measurements of Vorticity and Strain Rates in Compressible Turbulence Interactions
DOI:
https://doi.org/10.14311/994Keywords:
vorticity measurements, compressible turbulence, shock and expansion wavesAbstract
A custom-made hot-wire vorticity probe was designed and developed capable of measuring the time-dependent highly fluctuating three dimensional velocity and vorticity vectors, and associated total temperature, in non-isothermal and inhomogeneous flows with reasonable spatial and temporal resolution. These measurements allowed computation of the vorticity stretching/tilting terms, vorticity generation through dilatation terms, full dissipation rate of the kinetic energy term and full rate-of-strain tensor. The probe has been validated experimentally in low-speed boundary layers and used in the CCNY Shock Tube Research Facility, where interactions of planar expansion waves or shock waves with homogeneous and isotropic turbulence have been investigated at several Reynolds numbers.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd