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Abstract

This paper deals with the use of the optimizatieshhiques for obtaining the input

parameters from the bench scale experimental dthhare used for property based fire
modeling. Two multidimensional optimization techmés - Genetic algorithm (GA) and

Shuffled complex evolution (SCE) - are discussetkiil performance is compared based on
the algorithms application to estimation of the enial properties of one of the commonly
used structural materials — wood.
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INTRODUCTION

CFD fire modeling quickly emerged as an useful aodadays quite common tool in fire and
safety engineering practice. Commercially afforéaBFD fire modeling softwares as FDS,
Jasmine or SmartFire are successfully used in niayy fire safety applications, e. g.
proposing fire evacuation strategies, designing ldy@ut of the active fire protection
components etc., where the main objective of thdehis to study the consequences of the
fire (mainly the evolution of the temperature fiedshd spread of the smoke). When the
amount of the heat released during burning (HRRknewn, commercial fire modeling
softwares provide good agreement between the naodkthe real case situations and work as
a reliable prediction tool.

Contrary to fire consequence modelling, capabditief the softwares in case of fire
development and spread modelling are still verytéthand their use is restricted to research
area only. The main challenge in modeling fire agdres to accurately predict the amount of
the mass released when the material is exposeéatoals a function of time, i.e. to establish
the pyrolysis model together with an appropriatacten scheme of the material heat
degradation.

Considering the basic construction materials, thewkedge of the material mass loss rate
when exposed to heat is crucial from the pointietwof the buildings static. The amount and
the composition of the gases released during pstobignificantly influence the evolution of
the temperature field and the rate of the heatsteanto the surrounding materials. High
temperatures further initiate pyrolysis and leanlghte irreversible damage of the building
structures (the loss of strength and stiffnesstexdldeams or the destruction of the concrete
components caused by the sudden release of the wegteur from the moisture present in the
concrete).

When modeling pyrolysis the main problem is not ithgufficient theoretical knowledge of
the pyrolysis models, but the lack of the methodgltiow to determine the model input
parameters — kinetic and thermal parameters ofdégmmmposing material. Some of the
material properties can be determined from the mx@mtal measurements like
thermogravimetric analysis (ISO, 1997), conic datetry (ISO, 2002) or differential
scanning calorimetry (ISO, 2009). However, mosihef parameters have to be determined by



inferring or optimization from the experimental @atThe paper deals with using optimization
techniques for estimating the pyrolysis model inpatameters.

1 THEPYROLYSISMODELING

FDS (McGrattan et al., 2010), Gpyro (Lautenbergf07) and Thermokin (Stoliarov &
Lyon, 2008) belong currently to the most commonopygis models in the fire community.
Although these models were developed independetitgir mathematical formulation are
quite similar. The main differences between the e®dare the variable specification (e.qg.
conversion) and the extent of their generality. @hehe key governing equations in the
pyrolysis model are the condensed phase mass vatisarand the condensed phase species
conservation. These equations describe the chanthe anass of the condensed phase over
time in the computational cell, i.e. how quicklyetbondensed phase species are released into
the gas phase. One of the ways to express a masgecis the use of conversion. Therefore
the reaction rate of species decomposition is timetion of thermodynamic temperatufe
and conversiono (normalized mass fraction). For simplifying theacgon rate is usually
expressed as the product of two independent fumtio

r=k(T)f(a) (1)

wheref (a) is only a function of conversion aiqT) is only a function of temperature. The
dependence of the reaction rate on temperaturesuglly expressed by the Arrhenius
equation. The functiorf(a) is called "reaction model" and may have differfaris. The
simple form (1 — a)™ is most commonly used. Than the equation for deswn of the
condensed phase decomposition kinetics has this fogsh

d E
d—O: = Zexp (— E) 1-a)" (2)
whereZ is the pre-exponential (frequency) factirjs the activation energy is universal
gas constant and is the reaction order. The Arrhenius equation p&tars (Z,E) together
with the reaction ordem are input parameters into models of thermal decsitipn of solid

materials.

1.1 Theoptimization techniques

The problem of determination of material pyrolygreperties from bench-scale experimental
data is an inverse problem. The major complicationsolving the inverse problem are the
existences of more than one main convergence remdmmany minor local optima in each
region. In general there are many approaches haasli@ such global optimization problem
(e.g. deterministic methods, stochastic methodstistecs etc.), but not all can be applied to
this problem. The main concern when choosing th@migation method is how close the
converged solution is to the global optimum and reickly the algorithm converge to a
solution.

Since 1998, several scientific workers tried tolgmpfferent optimization algorithms to the
inverse problem of pyrolysis parameters estimat©ne of optimization algorithms tested
through the fire research community was the geradgiorithm (GA) that belongs to the group
evolutionary algorithms. Genetic algorithm is hsetic method that uses the principles of
evolutionary biology (natural selection, crossovewntation, heredity) to find the global
optimum. The basic principle of genetic algorithendiescribed in Fig. 1a. Although the GA
was proofed to be very versatile and powerful tit®luse has a number of disadvantages.
Results obtained by GA are strongly dependent eniritial setup of algorithm parameters
such as population size, mutation probability, sca®r probability or selection mechanism.
Moreover, the GA may have a problem with finding thobal optimum. If we change one (or
more) parameter we can get qualitatively differsalution which meet the optimization
criteria as well.



Chaos et al. (2010) used the shuffled complex énamiuSCE) algorithm to estimate the
material pyrolysis properties from FPA (ISO, 20&kperimental data. The shuffled complex
evolution is the global optimization algorithm déyged by Duan et al. (1993) at The
University of Arizona. The SCE method combine theersgth of Nelder-Mead (downhill
simplex) method, controlled random search, geratorithm and complex shuffling. The
flowchart of SCE algorithm is shown in Fig. 1b. tewberger (2011) implemented the SCE
algorithm to his pyrolysis model Gpyro and compared performance over GA using
synthetic cone calorimeter experimental data obliygtical non-charring material. The result
suggested that in comparison to GA, SCE converge unigue solution that corresponds to
the global optimum. The normalized deviation betwselution was not usually greater than
units percent. Moreover, the fitness function reacmuch higher values (the fitness function
is maximized). However, to confirm these conclusi@CE need to be further tested. It is
necessary to apply the SCE on various materialslandmposition patterns.
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Fig. 1 Optimization algorithm flowcharts a) GA, 8CE

2 COMPUTATIONAL PART

This work deals with the estimation of beech woetainposition kinetics using GA and
SCE optimization algorithm. The experimental dasadifor the optimization routine were
obtained from thermogravimetric analysis (TGA). TG#as carried out in nitrogen
atmosphere with heating rate of a sample 5 K/mithéamaximum temperature 800 °C.

For the thermal decomposition of beech wood in owidative atmosphere three-step
reaction scheme was chosen, shown in Fig. 2. Irfitbestep the water vapour naturally
contained in the wood evaporates resulting in thenge of the wood density. Subsequently
the dry wood decomposes by two independent reacfaming char and gaseous pyrolysate.
In the last step, the char transforms to residanagleasing gaseous pyrolysate.



1. step wet wood ———— water vapour

dry wood ——— char (s) + thermal pyrolysate (g)
dry wood ——— char (s) + thermal pyrolysate (g)
residue (s) + thermal pyrolysate (g)

Fig. 2 Beech wood thermal decomposition reactidese

For the selected model the total number of paramédebe estimated is 14. 12 parametgrs (
E, n for each decomposition reaction) are kinetic patans for reactiorky, ..., ks and the
remaining two are the density of char and the dgwsiresidue.

The estimation of the set of 14 parameters wasechaut in program Gpyro. To determine
the model kinetic parameters two global optimizatimethods - genetic algorithm and
shuffled complex evolution - were chosen.

One of the main goals of the this work was to as#es ability of the optimization algorithm
to converge to the unique solution. Therefore tedstwith different initial parameter values
randomly generated in the search parameter sppeeiffed by user) were performed both
using GA and SCE. At the end model data computaadgusoth GA and SCE estimated
parameters were compared to the experimental TGAlltee Additionally the rate of
convergence and final average value of fitnesstionavere studied to compare which of the
algorithms is computationally more efficient.

To investigate the influence of the population simng GA, four calculations with the
population size doubling in every run from 125 @9Q individuals were performed.

3 RESULTS

The sets of parameters obtained by optimizationgubbth GA and SCE are summarized in
Tab. 1. The parameters listed here are the bowslafi each variable search space, the
average values of individual variables calculatednf 10 trials with different initial estimate
of the parameter values, absolute standard dewi&tion the average value and normalized
standard deviation from the average value in péaces.

Tab. 1 GA settings: 250 individuals, 200 generaj@CE settings - 8 complexes each with
29 points, i.e. 232 points in total

Boundaries GA SCE

Numbe . ~ Minimum M aximu Absolute Norm. Absolute Norm.

; Variablg Units value m Average standgrd st. dev. | Average standgrd st. dev.
value deviation (%) deviation (%)

1 log z |log st 3.5 5.0 4.03 0.39 9.64 3.87 0.22 5.81
2 E |kJ/mol| 35.0 50.0 45.9 2.1 4.57 44.1 2.2 4.98
3 n - 0.7 15 1.14 0.16 14.21 1.39 0.13 9.27
4 logZ |logs!| 10.5 12.5 11.40 0.31 2.72 11.81 0.48 4.05
5 E.  |kJ/mol| 140.0 160.0 151.0 3.3 2.17 155.5 49 3.7
6 ne - 1.4 3.0 2.18 0.14 6.35 2.13 0.11 5.38
7 logZ |logs!| 19.0 21.0 19.84 0.27 1.34 19.14 0.27 141
8 Es |kJ/mol| 250.0 280.0 262.5 2.8 1.08 255.0 3.1 1.2
9 ne - 1.0 2.0 1.79 0.17 9.37 1.66 0.10 5.80
10 log Z |log st 6.0 9.0 6.99 0.38 5.46 6.64 0.14 2.07
11 E |kJ/mol| 140.0 170.0 149.9 4.3 2.86 141.0 2.2 1.54
12 n - 2.0 3.5 3.10 0.32 10.19 3.50 0.00 0.11
13 Pehar | kg/m? | 80.0 200.0 196.3 3.1 1.58 198.5 1.53 0.77
14 Presidu | kKg/m® | 80.0 200.0 166.4 15 0.90 165.7 0.57 0.34

Absolute average: 5.17 3.28



It can be seen, that both algorithms convergedn® game solution within deviation of
approximately 5.2 and 3.3 % using GA and SCE rdsmdg. The highest normalized
standard deviation from all parameters was apprateip 14.5 % with GA and 9.5 % with
the SCE algorithm both in the same parameter ticgaorder of the first reaction.

In overall, SCE performed slightly better than Gt our calculations did not confirm that
GA should have a problem to find qualitatively tbeme solution. The Fig. 4 and Tab. 1
suggest that the GA is also able to find "one" sofufor our case. This may be due to the
fact that the parameter space is very closely §perid does not have to contain a large
number of local extremes. However, definition ok tlslose parameter space requires
extensive user experience.

The disadvantage of using the real experimenta atthat the exact values of the material
parameters are not known, so it is not possibkssess the accuracy of the results. However
it is possible to compare the model results usimgrage values from Tab. 1 with the
experimental data to verify whether the estimatachmeters provide a good fit (Fig. 3). As
can be seen, the selected reaction model can bledte experimental curves very well. It
describes both the initial mass loss and the sesgmkak in the MLR curve.

Fig. 4a shows the GA fitness evolution of the &l tomputations. The group of curves with
higher fithess represent the evolution of the lredividual (the individual with the highest
value of fitness function from all individuals) the population. The curves below describe
average fitness value in the population. For thatively small population (250 individuals
and less) oscillations of fitness function occdiise part of GA as the evolutionary algorithm
are the random processes (e.g. mutation) whictcaase that the best individual is knocked
out of the population and the fitness function wiite number of function evaluations actually
decreases.

The SCE fitness evolution for ten different trialgh the different random number seeds is
shown in the Fig. 4b. Opposed to GA, the SCE f#negolution is much smoother and
without oscillation. The fitness function value ieases rapidly in the first approximately
5000 function evaluations and then slowly increaBlee fitness evolution follows quite
similar pattern in all trials and the fitness lexehches the absolute higher value than in GA.
Fig. 5 shows the effect of population size in th& @n the fithess evolution. With the
increasing population size the rate of convergatmerease and decrease the frequency of
oscillation - the probability that the best indivad will be randomly eliminated decreases
with increasing population.

L
09 \\ GA 08
08 [ % 5e 0.7 |
0.7 F
0.6 F \

05 F iy
3 bl

1000xd(m/mg)/dt

o

02 f = by
(TR T WS VPR TS AP PORT )

— = v *e r L Y
( 100 200 300 400 500 600 700 80

L L L L L L L Temperature (°C)
0 100 200 300 400 500 600 700 80
Temperature (°C)

Fig. 3 Comparison of the experimental and moded dat
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