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Abstract

During an explosive eruption, a construction isbytseveral actions, always associated to
elevated temperatures, causing fires, possibleosiqis and reduction of the mechanical
properties of the structural materials. In thisgraghe attention is focused on the analysis of a
specific volcanic event, the so-called air fall dsigs, generally falling from the eruptive
column due to gravity. In particular the robustnagsinst the air fall deposit of the most
common roofing structures, typically made of timbsteel and reinforced concrete, in the
Vesuvian area is evaluated. Consequently, somegiion systems for mitigating the effects
of the combination of overloading and high tempaed are identified.
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INTRODUCTION

Explosive volcanoes, like Vesuvius (Naples, ltalgye extremely dangerous. They are
characterized by the violent emission of the séedakruptive column, formed by gas-solid
dispersal, rising vertically from the vent, duehe initial high pressure of the magmatic gas.
An explosive eruption occurring close to an urberaaenerates several actions that possibly
hit a construction: the volcanic earthquake; thditamhal gravity load on roofs produced by
pyroclastic deposits; the horizontal dynamic presswn fagades due to pyroclastic flows and
lahars; the impact produced by flying fragments Zkgdani et al., 2009a,b). All these are
associated to elevated temperatures, which eitertrigger fires and explosions or induce
degradation of the mechanical properties of thecatral materials.

Down the century, the volcanic eruptions have pcedumany fatalities and economic losses
all over the world. In Europe, the Vesuvius areaharacterise dat highest risk: a probable
eruption of Vesuvius menaces the surrounding udmares, which are very much densely
populated, with about 600,000 inhabitants. Thisahdzituation of the Neapolitan volcano
motivated the core committee of European projectSTQAction C26 “Urban Habitat
Constructions under Catastrophic Events” (2006-2@d.ntroduce the volcanic vulnerability
assessment of the Vesuvius area as a case studg tie research topics, with the twofold
general objectives: the robustness evaluation @futiiban environment towards a Vesuvian
eruption and the identification of simple and ecoreal mitigation interventions. In this
context, the present paper specifically deals thighevaluation of the effects of the combination
of overloading and high temperature due to pyrdicladeposits on roofing structures,
consequently, leading to the identification of plolesmitigation systems.

1 NATURE AND MODELLING OF AIR FALL DEPOSITS

The main products of an explosive eruptions arepyr®clasts, originated by the magma
fragmentation. Their deposits are generically calégphra and divided in three basic types: air
fall, pyroclastic flows and surges.

The air fall (or tephra fall) deposits are formgtdive accretion of clasts, either falling by grgvit
from the eruptive column or throwing directly inrsaunding areas from the crater, according



to ballistic trajectories. Besides, the depositpybclastic flows and surges are produced by
gas-solid dispersions with high or low concentmatad particles, respectively, which move
along the volcano surface, following either thdagmse of the eruptive column, or a directional
explosion for the sliding of a volcano part, oateltal explosion at the bottom of a lava dome
(Nelson, 2010).

During violent explosive eruptions (Plinian and Rimian), large deposits of tephra fall can
cover an area of elliptical shape around the cra¢aiching also large distances, according to
the direction of stratospheric winds (INGV-OV, 201Zontrary, moderately explosive
eruptions can produce deposits of clasts, whogghdison is symmetrical around the crater,
because the launches are not sufficiently highetanfiluenced by the wind. Generally, the
thickness of air fall deposits decreases with teadce from the eruptive centre.

The air fall deposits action on the ground level ba considered as a gravitational distributed
load, which can be estimated as it follows:

de = plglh (1)

whereg is the gravity acceleration (9.811%)shandp are the deposit thickness (m)and density
(kNm3), respectively. The latter depends on the comjomsind compactness of pyroclasts
and the deposit moisture, which is weather depdndémereforep, ranges, according to its
compactness, from 4 to 16kNim dry conditions, from 8 to 20 kNrin damp conditions
(Spence et al., 2005).

The air fall deposits action on the roofs can bedefied by similitude with the snow load
(Faggiano et al. 2013), considerigg as characteristic value of the tephra load. Itiqdar
with reference to the 1631 sub-PlinianVesuvian goap it being considered in the current
Evacuation Plan by the Civil Protection, in Figthe isopaches of the air fall deposits, which
give the distribution of the deposit thickness,@picted. In the same figure, the air fall deposit
loads on the groundi) and on the roofog), corresponding t€e=1, p = 14 kNn?®, different
deposits thicknesls and typical pitch angle, according to the technical Italian code for the
snow (M.D., 2008), are indicated. In addition te tielationship (2), the model of the air fall
deposits action should be completed consideringhtgle temperatures (200-400°C) of the
clasts.
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Fig. 1 Air fall deposits isopaches (cm) (a) analds on the groundjé) and on the roofgr)
(b), referred to the 1631 sub-PlinianVesuvian aaupt

2 INSITUSURVEY AT THE VESUVIAN URBAN AREA AND CASE STUDIES

The pilot area was identified in Torre del Gredw thost populous town in the volcanic area
(about 90,600 inhabitants). Within the COST ActidB6, two missions were organized, for
investigating three different urbanized zones (PedgBrio et al., 2010), involving members of
the partner countries, with the cooperation ofRb&NIVS Centre (Hydrological, Volcanic and
Seismic Engineering Centre, Naples, Italy; Mazzoddral., 2010).

The most common constructive types of buildingghe Vesuvius area are masonry and
reinforced concrete (RC). The main typologies affscare either horizontal (87%), made of
timber (4%), steel (58%) and RC (25%) structuresjamlted (13%).



The examined roof typologies are ventilated andveatilated timber, steel and RC structures,
whose features are represented in Fig. 2.
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Fig. 2 Main Vesuvian roof types: a) not ventilategdber; b) ventilated timber; c) steel; d) RC

3 ROBUSTNESSEVALUATION OF THE VESUVIAN ROOF STRUCTURE

The behaviour of the study roof structures strugkhe air fall deposits is evaluated in two
steps (Faggiano et al., 2013), considering the awatibn of the twofold action, such as the
additional gravity load and high temperatures. Tits# one consists in the assessment of the
ultimate vertical load which the structure is atwesustain, in addition to permanent design
load. In particular, the study is extended to rdudsing different geometries and design live
loads (0.6 and 2.0 kNr). The second one is the thermal analysis of tbésravhich aims at
evaluating the mechanical degradation due to legiperatures.

The considered static scheme is a simple beam sgeppat both ends (Fig. 3), subjected to
dead loady and live loadyr due to the air fall deposits.
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Fig. 3 Static scheme and geometrical featureseofdofs

The mechanical thermal degradation of structurdeneds (Eurocodes 2, 3 and 5, Parts 1.2) is
considered at four temperatures, such as 20, 200,aBd 400°C, they being assumed as
uniformly distributed within the cross section. Timal analyses are carried out by ABAQUS
v. 6.5 nonlinear calculation program (Hibbitt et 2010). The FEM model of a 1.50 m x 1.00
m roof area with 16cm depth beams for timber ardlsbofs and 12 cm depth beams for RC
ones, all of them having a 80cm interaxis, is peffig. 4). The different roof layers (tile, slab,
waterproofing), which the thermal properties of toastitutive material (density, conductivity
and specific heat) are assigned to, are modeliedigih 3D heat transfer elements. With the
purpose of increasing the heat transfer time fratrados to intrados of the roof, a layer of a



thermal insulator, constituted by a 3cm thick rogkol with a conductivity coefficient
0f0.04WmK1, which is considerably smaller than those of tim{k1204WmK™), steel
(53.3004 WimtK 1) and concrete (1.9104WH{™Y), is also considered.

For each roof types, the ultimate residual livadlqas determined, at different pitch anghkes
(0-45°) and temperatures T (20-400°C). In particuta the sake of example in Fig. 5 for steel
roofs the diagrams ajvslL, they referring to ambient temperature (20°C) widlhiable pitch
angle (Fig. 5a), and to a 0° pitch angle (pland)ratth variable temperatures (Fig. 5b), and
the thermal trend (Fig.5 c)are illustrated.

Fig. 4 Portions of roof considered in the therar@lysesa) not ventilated timbeb)

ventilated timberc) steeld) RC
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Fig. 5 Steel roofs: air fall deposit collapse Ipadth different pitch angles (a) and
temperatures (b); thermal trend (c)

Results show that the ultimate residual lggaehs an increment of about 30-40% as far as the
pitch anglea varies from 0 to 45°. Contrary, high temperatysesduce a decrease of the
collapse vertical load due to the thermal degradatf the materials, which, as an average, can
be quantified as 30% at 200°C and 50% at 300°Cnwihe clasts temperature reaches 400°C,
for most of the considered sections, any additidoadl cannot be resisted and the collapse
occurs already for permanent loads.

Tab.1 Collapse times with or without an insulasydr

Te | Time without insulatc Time with insulato
°C S S
Timber roof 10C 18C 43C
Ventilated timber roc | 10C 12C 36C
Steel roo 40C 200c 620(
RC roof 40C 290( 1295(




Finally, the maximum collapse time for each roqddlpgy is determined, as reported in Tab.
1, where the beneficial effect of the insulatorlgyespecially for RCroof structures is apparent
(Faggiano et al., 2013).

4 PROPOSED VULNERABILITY CHARTS

In Fig. 6 some vulnerability charts are proposedhWéference to the 1631 Vesuvius eruption,
the isopaches corresponding to deposit thicknedsestain distances from the crater, together
with the roof types (L=6mCe=1 and p=14kNnT®) and the related collapse times are
represented, in the case either of a pitch amgdqual to Owithout insulator layer (Fig. 6a) or
pitch anglea equal to 0, 20°, 30° and 45and with the insulator layer (Figs. 6b-e).
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Fig. 6 Maximum collapse time produced by air @@posits relating to 1631 Vesuvian
eruption for roofs without insulator ard=0° (a) and with insulator

anda=0° (b), 20° (c), 30° (d) and 45° (e)

5 CONCLUSIVE REMARKSAND POSSIBLE MITIGATION SYSTEMS

With reference to the Vesuvius area, roofs desigaedsist ordinary vertical loads (0.60 and
2.00 kNn?) collapse when subjected to air fall deposits ua sub-Plinian eruption, as the
1631 one. As it appears, the roofs behaviour uantdall deposits is influenced by two main
factors: the materials thermal degradation anddbépitch angle. The former one is due to the



high clasts temperatures (150-400°C). It can beyateéd through the use of a thermal insulator
with a conductivity coefficient of 0.04W/mK, able triple the collapse time of timber, steel
and concrete roofs. Besides, as far as the pitgle anlarge, the load on the roof due to the air
fall deposits decreases and the ultimate residerdical load increases; so, in the areas at risk
of pyroclastic deposits, a minimum slope of thefspsuch as 30°, should be required. In
particular, for the existing plane roofs, a pitectyke can be obtained through the realization of
over-structures made of light materials and providéh an adequate thermal insulation.
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