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Abstract 
During an explosive eruption, a construction is hit by several actions, always associated to 
elevated temperatures, causing fires, possible explosions and reduction of the mechanical 
properties of the structural materials. In this paper, the attention is focused on the analysis of a 
specific volcanic event, the so-called air fall deposits, generally falling from the eruptive 
column due to gravity. In particular the robustness against the air fall deposit of the most 
common roofing structures, typically made of timber, steel and reinforced concrete, in the 
Vesuvian area is evaluated. Consequently, some protection systems for mitigating the effects 
of the combination of overloading and high temperatures are identified. 
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INTRODUCTION 

Explosive volcanoes, like Vesuvius (Naples, Italy), are extremely dangerous. They are 
characterized by the violent emission of the so-called eruptive column, formed by gas-solid 
dispersal, rising vertically from the vent, due to the initial high pressure of the magmatic gas.  
An explosive eruption occurring close to an urban area generates several actions that possibly 
hit a construction: the volcanic earthquake; the additional gravity load on roofs produced by 
pyroclastic deposits; the horizontal dynamic pressures on façades due to pyroclastic flows and 
lahars; the impact produced by flying fragments (Mazzolani et al., 2009a,b). All these are 
associated to elevated temperatures, which either can trigger fires and explosions or induce 
degradation of the mechanical properties of the structural materials. 
Down the century, the volcanic eruptions have produced many fatalities and economic losses 
all over the world. In Europe, the Vesuvius area is characterise dat highest risk: a probable 
eruption of Vesuvius menaces the surrounding urban zones, which are very much densely 
populated, with about 600,000 inhabitants. This hazard situation of the Neapolitan volcano 
motivated the core committee of European project COST Action C26 “Urban Habitat 
Constructions under Catastrophic Events” (2006-2010) to introduce the volcanic vulnerability 
assessment of the Vesuvius area as a case study within the research topics, with the twofold 
general objectives: the robustness evaluation of the urban environment towards a Vesuvian 
eruption and the identification of simple and economical mitigation interventions. In this 
context, the present paper specifically deals with the evaluation of the effects of the combination 
of overloading and high temperature due to pyroclastic deposits on roofing structures, 
consequently, leading to the identification of possible mitigation systems. 

1 NATURE AND MODELLING OF AIR FALL DEPOSITS 

The main products of an explosive eruptions are the pyroclasts, originated by the magma 
fragmentation. Their deposits are generically called tephra and divided in three basic types: air 
fall, pyroclastic flows and surges. 
The air fall (or tephra fall) deposits are formed by the accretion of clasts, either falling by gravity 
from the eruptive column or throwing directly in surrounding areas from the crater, according 



 

  

to ballistic trajectories. Besides, the deposits of pyroclastic flows and surges are produced by 
gas-solid dispersions with high or low concentration of particles, respectively, which move 
along the volcano surface, following either the collapse of the eruptive column, or a directional 
explosion for the sliding of a volcano part, or a lateral explosion at the bottom of a lava dome 
(Nelson, 2010). 
During violent explosive eruptions (Plinian and sub-Plinian), large deposits of tephra fall can 
cover an area of elliptical shape around the crater, reaching also large distances, according to 
the direction of stratospheric winds (INGV-OV, 2012). Contrary, moderately explosive 
eruptions can produce deposits of clasts, whose distribution is symmetrical around the crater, 
because the launches are not sufficiently high to be influenced by the wind. Generally, the 
thickness of air fall deposits decreases with the distance from the eruptive centre. 
The air fall deposits action on the ground level can be considered as a gravitational distributed 
load, which can be estimated as it follows: 

 hgqG ⋅⋅= ρ  (1) 

where g is the gravity acceleration (9.81ms-2), hand ρ are the deposit thickness (m)and density 
(kNm-3), respectively. The latter depends on the composition and compactness of pyroclasts 
and the deposit moisture, which is weather dependent. Therefore ρ, ranges, according to its 
compactness, from 4 to 16kNm-3in dry conditions, from 8 to 20 kNm-3in damp conditions 
(Spence et al., 2005).  
The air fall deposits action on the roofs can be modelled by similitude with the snow load 
(Faggiano et al. 2013), considering qG as characteristic value of the tephra load. In particular 
with reference to the 1631 sub-PlinianVesuvian eruption, it being considered in the current 
Evacuation Plan by the Civil Protection, in Fig. 1 the isopaches of the air fall deposits, which 
give the distribution of the deposit thickness, are depicted. In the same figure, the air fall deposit 
loads on the ground (qG) and on the roof (qR), corresponding to CE=1, ρ = 14 kNm-3, different 
deposits thickness h and typical pitch angle α, according to the technical Italian code for the 
snow (M.D., 2008), are indicated. In addition to the relationship (2), the model of the air fall 
deposits action should be completed considering the high temperatures (200-400°C) of the 
clasts. 
 

 (a) 

Fig. 1  Air fall deposits isopaches (cm) (a) and loads on the ground (qG) and on the roof (qR) 
(b), referred to the 1631 sub-PlinianVesuvian eruption 

2 IN SITU SURVEY AT THE VESUVIAN URBAN AREA AND CASE STUDIES 

The pilot area was identified in Torre del Greco, the most populous town in the volcanic area 
(about 90,600 inhabitants). Within the COST Action C26, two missions were organized, for 
investigating three different urbanized zones (De Gregorio et al., 2010), involving members of 
the partner countries, with the cooperation of the PLINIVS Centre (Hydrological, Volcanic and 
Seismic Engineering Centre, Naples, Italy; Mazzolani et al., 2010). 
The most common constructive types of buildings in the Vesuvius area are masonry and 
reinforced concrete (RC). The main typologies of roofs are either horizontal (87%), made of 
timber (4%), steel (58%) and RC (25%) structures, or vaulted (13%). 

h qG 
qR 

α=0° α=20° α=30° α=45° 
cm kNm-2 kNm-2 kNm-2 kNm-2 kNm-2 
10 1.4 1.1 1.1 1.1 0.6 
20 2.8 2.2 2.2 2.2 1.1 
30 4.2 3.4 3.4 3.4 1.7 
50 7.0 5.6 5.6 5.6 2.8 
100 14.0 11.0 11.0 11.0 5.6 

(b) 



 

  

The examined roof typologies are ventilated and not ventilated timber, steel and RC structures, 
whose features are represented in Fig. 2. 
 

  

 
 

Fig. 2 Main Vesuvian roof types: a) not ventilated timber; b) ventilated timber; c) steel; d) RC  

3 ROBUSTNESS EVALUATION OF THE VESUVIAN ROOF STRUCTURE 

The behaviour of the study roof structures struck by the air fall deposits is evaluated in two 
steps (Faggiano et al., 2013), considering the combination of the twofold action, such as the 
additional gravity load and high temperatures. The first one consists in the assessment of the 
ultimate vertical load which the structure is able to sustain, in addition to permanent design 
load. In particular, the study is extended to roofs having different geometries and design live 
loads (0.6 and 2.0 kNm-2). The second one is the thermal analysis of the roofs, which aims at 
evaluating the mechanical degradation due to high temperatures.  
The considered static scheme is a simple beam supported at both ends (Fig. 3), subjected to 
dead load g and live load qR due to the air fall deposits. 
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Fig. 3  Static scheme and geometrical features of the roofs 

The mechanical thermal degradation of structural materials (Eurocodes 2, 3 and 5, Parts 1.2) is 
considered at four temperatures, such as 20, 200, 300 and 400°C, they being assumed as 
uniformly distributed within the cross section. Thermal analyses are carried out by ABAQUS 
v. 6.5 nonlinear calculation program (Hibbitt et al., 2010). The FEM model of a 1.50 m x 1.00 
m roof area with 16cm depth beams for timber and steel roofs and 12 cm depth beams for RC 
ones, all of them having a 80cm interaxis, is set up (Fig. 4). The different roof layers (tile, slab, 
waterproofing), which the thermal properties of the constitutive material (density, conductivity 
and specific heat) are assigned to, are modelled through 3D heat transfer elements. With the 
purpose of increasing the heat transfer time from extrados to intrados of the roof, a layer of a 

i

HOLLOW TILE

CONCRETE SLAB

SLAB
TILE FLOORING

0,06m

0,04m
0,03m
0,02m

WATERPROOFING 

TIMBER BEAM
TIMBER BEAM

PLANKING

ROOFING TILES

0,04m

SPLINE
SPLINE
WATERPROOFING

0,03m
0,03m

i

0,03m

i

STEEL BEAM

HOLLOW TILE

CONCRETE SLAB 

WATERPROOFING

TILE FLOORING

0,06m

0,04m
0,03m
0,02m

h

0,04m
0,03m
0,02m

h

0.50m

RC BEAM

HOLLOW BLOCK

CONCRETE SLAB

WATERPROOFING

SLAB

TILE FLOORING

L

g

q
R

 

Spans: 
L = 3, 4, 5, 6, 7m 
Pitch angles: 
α = 0, 20, 30, 45 ° 

Interaxes:  Timber and steel beams:  
RC beams:  

i = 0.80, 1.00m     
i = 0.50m              

 

a) b) 

c) d) 



 

  

thermal insulator, constituted by a 3cm thick rock wool with a conductivity coefficient 
of0.04Wm-1K-1, which is considerably smaller than those of timber (0.1204Wm-1K-1), steel 
(53.3004 Wm-1K-1) and concrete (1.9104Wm-1K-1), is also considered. 
For each roof types, the ultimate residual live load q is determined, at different pitch angles α 
(0-45°) and temperatures T (20-400°C). In particular, for the sake of example in Fig. 5 for steel 
roofs the diagrams of qvsL, they referring to ambient temperature (20°C) with variable pitch 
angle (Fig. 5a), and to a 0° pitch angle (plane roof) with variable temperatures (Fig. 5b), and 
the thermal trend (Fig.5 c)are illustrated. 
 

 

Fig. 4  Portions of roof considered in the thermal analyses: a) not ventilated timber; b) 
ventilated timber; c) steel; d) RC 
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Fig. 5  Steel roofs: air fall deposit collapse loads with different pitch angles (a) and 
temperatures (b); thermal trend (c) 

Results show that the ultimate residual load q has an increment of about 30-40% as far as the 
pitch angle α varies from 0 to 45°. Contrary, high temperatures produce a decrease of the 
collapse vertical load due to the thermal degradation of the materials, which, as an average, can 
be quantified as 30% at 200°C and 50% at 300°C; when the clasts temperature reaches 400°C, 
for most of the considered sections, any additional load cannot be resisted and the collapse 
occurs already for permanent loads. 

Tab.1 Collapse times with or without an insulator layer 

 Tcr Time without insulator Time with insulator 

°C s s 

Timber roof 100 180 430 

Ventilated timber roof 100 120 360 

Steel roof 400 2000 6200 

RC roof 400 2900 12950 

a) b) c) d) 

a) 

b) 



 

  

Finally, the maximum collapse time for each roof typology is determined, as reported in Tab. 
1, where the beneficial effect of the insulator layer, especially for RCroof structures is apparent 
(Faggiano et al., 2013). 

4 PROPOSED VULNERABILITY CHARTS 

In Fig. 6 some vulnerability charts are proposed. With reference to the 1631 Vesuvius eruption, 
the isopaches corresponding to deposit thicknesses at certain distances from the crater, together 
with the roof types (L=6m, CE=1 and ρ=14kNm−3) and the related collapse times are 
represented, in the case either of a pitch angle α equal to 0°without insulator layer (Fig. 6a) or 
pitch angle α equal to 0°, 20°, 30° and 45° and with the insulator layer (Figs. 6b-e).  
 

 

 
 
 

 

Fig. 6  Maximum collapse time produced by air fall deposits relating to 1631 Vesuvian 
eruption for roofs without insulator and α=0° (a) and with insulator 

and α=0° (b), 20° (c), 30° (d) and 45° (e) 

5 CONCLUSIVE REMARKS AND POSSIBLE MITIGATION SYSTEMS 

With reference to the Vesuvius area, roofs designed to resist ordinary vertical loads (0.60 and 
2.00 kNm-2) collapse when subjected to air fall deposits due to a sub-Plinian eruption, as the 
1631 one. As it appears, the roofs behaviour under air fall deposits is influenced by two main 
factors: the materials thermal degradation and the roof pitch angle. The former one is due to the 
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high clasts temperatures (150-400°C). It can be mitigated through the use of a thermal insulator 
with a conductivity coefficient of 0.04W/mK, able to triple the collapse time of timber, steel 
and concrete roofs. Besides, as far as the pitch angle is large, the load on the roof due to the air 
fall deposits decreases and the ultimate residual vertical load increases; so, in the areas at risk 
of pyroclastic deposits, a minimum slope of the roofs, such as 30°, should be required. In 
particular, for the existing plane roofs, a pitch angle can be obtained through the realization of 
over-structures made of light materials and provided with an adequate thermal insulation.  
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