Why a New Code for Novae Evolution and Mass Transfer in Binaries?
DOI:
https://doi.org/10.14311/APP.2015.02.0103Abstract
One of the most interesting problems in Cataclysmic Variables is the long time scale evolution. This problem appears in long time evolution, which is also very important in the search for the progenitor of SN Ia. The classical approach to overcome this problem in the simulation of novae evolution is to assume: (1) A constant in time, rate of mass transfer. (2) The mass transfer rate that does not vary throughout the life time of the nova, even when many eruptions are considered. Here we show that these assumptions are valid only for a single thermonuclear flash and such a calculation cannot be the basis for extrapolation of the behavior over many flashes. In particular, such calculation cannot be used to predict under what conditions an accreting WD may reach the Chandrasekhar mass and collapse. We report on a new code to attack this problem. The basic idea is to create two parallel processes, one calculating the mass losing star and the other the accreting white dwarf. The two processes communicate continuously with each other and follow the time depended mass loss.Downloads
Published
Issue
Section
License
Copyright notice
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal the right of the first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., to post it to an institutional repository or to publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges as well as earlier and greater citation of the published work (See The Effect of Open Access).