COUPLED SIMULATION FOR FIRE-EXPOSED STRUCTURES USING CFD AND THERMO-MECHANICAL MODELS
DOI:
https://doi.org/10.14311/APP.2017.13.0121Keywords:
Thermo-mechanical model, Virtual Furnace, Computational fluid dynamics, Multiphysics,Abstract
Fire resistance of buildings is based on fire tests in furnaces with gas burners. However, the tests are very expensive and time consuming. This article presents a coupled simulation of an element loaded by a force and a fire loading. The simulation solves a weakly-coupled problem, consisting of fluid dynamics, heat transfer and mechanical model. The temperature field from the computational fluid dynamics simulation (CFD) creates Cauchy and radiative boundary conditions for the thermal model. Then, the temperature field from element is passed to the mechanical model, which induces thermal strain and modifies material parameters. The fluid dynamics is computed with Fire Dynamics Simulator and the thermo-mechanical task is solved in OOFEM. Both softwares are interconnected with MuPIF python library, which allows smooth data transfer across the different meshes, orchestrating simulations in particular codes, exporting results to the VTK formats and distributed computing.Downloads
Published
Issue
Section
License
Copyright notice
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal the right of the first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., to post it to an institutional repository or to publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges as well as earlier and greater citation of the published work (See The Effect of Open Access).