MODELING OF UNDERGROUND STRUCTURES SUBJECTED TO EARTHQUAKE BY COMBINING 1D FREE-FIELD AND 2D PSEUDO-STATIC ANALYSES
DOI:
https://doi.org/10.14311/APP.2018.15.0088Keywords:
earthquake, shear weave, accelerogram, finite element method, free-field, pseudostatic, absorbing boundary, fixed boundary, lining forcesAbstract
The paper deals with the evaluation of tunnel construction subjected to earthquake using a pseudostatic analysis combined with the finite element method. The initial stage of calculation is concerned with the design of computational model and subsequent analysis of the actual excavation process. The case study of the response of a selected construction to earthquake follows next. To that end, the so called 1D free filed dynamic analysis is performed first to generate appropriate loading conditions in terms of a layered-wise constant shear strain. Therein, two particular boundary conditions, termed the fixed and absorbing boundary, are examined. The corresponding loading conditions are finally introduced in a 2D plane strain analysis to yield the internal forces developed in the tunnel lining. The results clearly show inadequacy of the fixed boundary and promote the use of absorbing boundary conditions for the present soil profile.Downloads
Published
Issue
Section
License
Copyright notice
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal the right of the first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., to post it to an institutional repository or to publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges as well as earlier and greater citation of the published work (See The Effect of Open Access).