EXPERIMENTAL AND NUMERICAL RESEARCH ON FLOW IN THE LAST STAGE OF 1090MW STEAM TURBINE
DOI:
https://doi.org/10.14311/APP.2018.20.0043Keywords:
steam turbine, experimental measurement, last stage blade, pneumatic probe, optical probeAbstract
The paper deals with experimental and numerical research in the last stage of real 1090MW steam turbine with the last steel blade length 1220mm placed in nuclear power station. The last stage was equipped with twelve static pressure taps. It was also possible to probe in two planes - before and behind the last stage using pneumatic or optical probes. A number of last stage flow parameters were determined at the root and tip wall for nominal turbine output. Among those parameters are static pressures, Mach and Reynolds numbers, last stage reactions and steam wetness. All the directly measured and evaluated flow parameters are taken from locally measured points and that is why even 3D CFD calculation of the whole system - last stage, diffuser and exhaust hood was implemented. Measured and calculated parameters are compared. Especially static pressures are in very good agreement; the only steam wetness has bigger difference due to different measurement position. Locally measured values are enough to estimate the flow behavior of the last stage. On the other hand, the CFD simulations with well determined boundary conditions, meshes and geometry and is effective tool to simulate even very complicated flow structures in the last stage and exhaust hood.Downloads
Published
Issue
Section
License
Copyright notice
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal the right of the first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., to post it to an institutional repository or to publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges as well as earlier and greater citation of the published work (See The Effect of Open Access).