EXPERIMENTAL INVESTIGATION OF CRITICAL HEAT FLUX IN ANNULUS AT LOW PRESSURE AND LOW FLOW PARAMETERS
DOI:
https://doi.org/10.14311/APP.2020.28.0050Keywords:
correlations, critical heat flux, flow boiling, heat transferAbstract
Steady state flow boiling experiments were conducted on a technically smooth Inconel 625 tube with outer diameter 9.1 mm at inlet pressures 131, 220 and 323 kPa, inlet temperatures 62, 78 and 94 °C and approximately 400, 600 and 1000 kg/(m2.s) mass flow. Water of these parameters was entering into the vertically aligned annulus, where the uniformly heated tube was placed until the critical heat flux (CHF) appeared. The experimental data were compared to estimations of CHF by local PGT tube correlation and Groeneveld’s look-up tables for tubes. The results imply that in the region of low pressure and low mass flux, the differences between calculations and experiments are substantial (more than 50 % of CHF). The calculations further imply that look-up tables and tube correlations should be corrected to the annulus geometry. Here, the Doerffer’s approach was chosen and led to a substantial enhancement of CHF estimation. Yet, a new correlation for the region of low pressure and flow is needed.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Daniel Vlček, Ladislav Suk, Kamil Števanka, Taron Petrosyan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright notice
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal the right of the first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., to post it to an institutional repository or to publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges as well as earlier and greater citation of the published work (See The Effect of Open Access).