Dynamic Stress Affecting the Radial Baffle on an Industrial Mixing Unit with a Pitched Blade Impeller
Abstract
This paper presents a study of dimensioning under fatigue stress of a standard radial baffle in an industrial mixing unit (T = 5 m) with a pitched blade impeller under a turbulent regime of flow of an agitated liquid. The fatigue stress of the radial baffle is calculated from the known experimentally determined distribution of the dynamic pressure affecting the standard radial baffle in a pilot plant agitated system. Asymmetrical distribution of the dynamic pressure along the height of the baffle significantly affects the thickness of the baffle as well as the dimensions of the doublefillet weld fixing the baffle to the vessel wall. Our results are valid for standard pitched blade impellers with four or six inclined blades (D/T = 1/3, a = 45°) and off-bottom clearances h/T = 0.2, 0.35 and 0.5 pumping liquid downwards in a cylindrical mixing vessel with a flat bottom and four baffles (b/T = 0.1) when the Reynolds number exceeds ten thousand.Downloads
Published
Issue
Section
License
Copyright (c) 2015 Acta Polytechnica

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd