Macro-instabilities of the Flow Pattern in a Stirred Vessel: Detection and Characterization Using Local Velocity Data
Abstract
Velocity data obtained by laser Doppler velocimetry (LDV) in a flat-bottomed cylindrical stirred vessel (diameter: 300 mm, filling height: 300 mm, working liquids: water and aqueous glycerine, impeller Reynolds number values (ReM): 750, 1200 and 75000) equipped with four radial baffles and stirred with a pitched blade impeller are analyzed by methods of non-linear analysis. The macro-instability of the flow pattern (MI) was extracted from the experimental data by a combination of the proper orthogonal decomposition (POD) technique and spectral analysis. The relative magnitude of the MI (the fraction of flow total kinetic energy captured by MI) was evaluated and its spatial distribution was determined. The temporal evolution of the MI was constructed from the POD eigenmodes. The chaotic attractors of the macro-instabilities were reconstructed by the method of delays. The embedding dimension was determined by the false nearest neighbor analysis (FNN) method, and the time delay from the first min imum of mutual information. Correlation dimension de and the largest Lyapunov exponents λmax of the reconstructed attractorswere evaluated. The correlation dimension slightly increases with the increasing ReM value. The spatial distribution of dc is quite uniform at all ReM values. The maximum Lyapunov exponent is clearly positive for all analyzed at tractors. Spatial distribution of λmax is markedly non-uniform and exhibits irregular variations. Possible applications of nonlinear analysis of local velocity data in mixing processes are mentioned.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Acta Polytechnica

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd